The correct choice is (b) \(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}+\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}\)
To explain I would say: The second order of the partial differentiation of excess hydrostatic pressure u with respect to x is,
\(\frac{∂^2 \overline{u}}{∂x^2}=(\frac{∂}{∂r} cosθ-\frac{1}{r} sinθ \frac{∂}{∂θ})(\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r}\frac{∂\overline{u}}{∂θ} θsinθ) ————-(1)\)
also, the second order of the partial differentiation of excess hydrostatic pressure \overline{u} with respect to y is,
\(\frac{∂^2 \overline{u}}{∂y^2}=(\frac{∂}{∂r} cosθ-\frac{1}{r} sinθ \frac{∂}{∂θ})(\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r}\frac{∂\overline{u}}{∂θ} θsinθ)\) ———-(2)
∴ adding (1) and (2),
\(\frac{∂^2 \overline{u}}{∂x^2}+\frac{∂^2 \overline{u}}{∂y^2}=\frac{∂^2 \overline{u}}{∂r^2}+\frac{1}{r} \frac{∂\overline{u}}{∂r}+\frac{1}{r^2}\frac{∂^2 \overline{u}}{∂θ^2}.\)