The correct answer is (d) \(\frac{∂v}{∂z}=m_v \frac{∂\overline{u}}{∂t}\)
Easy explanation: From the volume of water squeezed out, ∆q=\(\frac{∂v}{∂z}\) dxdydz and change of volume per unit time, \(\frac{∂∆V}{∂z}=-m_v dxdydz \frac{∂∆σ’}{∂t}\)
we get, \(\frac{∂v}{∂z}=-m_v \frac{∂∆σ’}{∂t}\) —————–(1)
since, ∆σ=∆σ’+u, partally differentiating it with respect to time t,
\(\frac{∂∆σ’}{∂t}=-\frac{∂\overline{u}}{∂t}\) ————————(2)
∴ from (1) and (2),
\(\frac{∂v}{∂z}=m_v \frac{∂\overline{u}}{∂t}.\)