The correct choice is (a) \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r}\frac{∂\overline{u}}{∂θ} sinθ\)
Explanation: Partially differentiating the excess hydrostatic pressure \overline{u} with respect to x,
\(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} \frac{∂r}{∂x}+\frac{∂\overline{u}}{∂θ}\frac{∂θ}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r}\frac{∂\overline{u}}{∂θ} sinθ.\)
∴ \(\frac{∂\overline{u}}{∂x}=\frac{∂\overline{u}}{∂r} cosθ-\frac{1}{r}\frac{∂\overline{u}}{∂θ} sinθ.\)