For an inverting scaling amplifier with three input voltages VaV_aVa, VbV_bVb, and VcV_cVc, the output voltage VoV_oVo can be derived using the basic principles of summing amplifiers with scaling factors for each input.
In a typical inverting summing amplifier with scaling factors, the output voltage VoV_oVo is given by the formula:
Vo=−(RFRa)Va−(RFRb)Vb−(RFRc)VcV_o = - \left( \frac{R_F}{R_a} \right) V_a - \left( \frac{R_F}{R_b} \right) V_b - \left( \frac{R_F}{R_c} \right) V_cVo=−(RaRF)Va−(RbRF)Vb−(RcRF)Vc
Where:
- RFR_FRF is the feedback resistor,
- RaR_aRa, RbR_bRb, and RcR_cRc are the resistances associated with each of the inputs VaV_aVa, VbV_bVb, and VcV_cVc, respectively.
Thus, the correct expression for the output voltage is:
Vo=−[(RFRa)Va+(RFRb)Vb+(RFRc)Vc]V_o = - \left[ \left( \frac{R_F}{R_a} \right) V_a + \left( \frac{R_F}{R_b} \right) V_b + \left( \frac{R_F}{R_c} \right) V_c \right]Vo=−[(RaRF)Va+(RbRF)Vb+(RcRF)Vc]
This corresponds to option (a):
(a) Vo=−[(RFRa)Va+(RFRb)Vb+(RFRc)Vc]V_o = - \left[ \left( \frac{R_F}{R_a} \right) V_a + \left( \frac{R_F}{R_b} \right) V_b + \left( \frac{R_F}{R_c} \right) V_c \right]Vo=−[(RaRF)Va+(RbRF)Vb+(RcRF)Vc].
Therefore, the correct answer is (a).