+1 vote
in Linear Integrated Circuits by (39.8k points)
In the circuit shown, supply voltage = ±15v, Va= +3v , Vb= -4v , Vc= +5v, R= R1= 1kΩ and RF= 2kΩ.  741 op-amp has A=  2×10^5 and R1= 10kΩ. Determine the output voltage internal resistance of the circuit?

(a) Vo ≅3v , RiF=6.67MΩ

(b) Vo ≅3v , RiF= 7MΩ

(c) Vo ≅3v , RiF=9.2MΩ

(d) Vo ≅3v , RiF= 3.5MΩ

I had been asked this question during an online interview.

The question is from Summing, Scaling & Averaging Amplifier topic in chapter Operational Amplifier Applications of Linear Integrated Circuits

1 Answer

0 votes
by (6.5k points)

To determine the output voltage (VoV_oVo​) and the internal resistance (RiFR_{iF}RiF​) of the circuit, let's break down the problem and solve step by step.

Given Data:

  • Supply Voltage: ±15V\pm 15V±15V
  • Input Voltages:
    • Va=+3VV_a = +3VVa​=+3V
    • Vb=−4VV_b = -4VVb​=−4V
    • Vc=+5VV_c = +5VVc​=+5V
  • Resistances:
    • R=R1=1kΩR = R_1 = 1k\OmegaR=R1​=1kΩ
    • RF=2kΩR_F = 2k\OmegaRF​=2kΩ
    • R1=10kΩR_1 = 10k\OmegaR1​=10kΩ (Internal resistance of 741 op-amp)
  • Op-Amp Gain: A=2×105A = 2 \times 10^5A=2×105

Step 1: Calculate the Output Voltage (VoV_oVo​) of the Summing Amplifier

For a summing amplifier, the output voltage VoV_oVo​ is given by the formula:

Vo=−(RFR1)×(Va+Vb+Vc)V_o = - \left( \frac{R_F}{R_1} \right) \times (V_a + V_b + V_c)Vo​=−(R1​RF​​)×(Va​+Vb​+Vc​)

Substituting the values:

Vo=−(2kΩ1kΩ)×(3V+(−4V)+5V)V_o = - \left( \frac{2k\Omega}{1k\Omega} \right) \times (3V + (-4V) + 5V)Vo​=−(1kΩ2kΩ​)×(3V+(−4V)+5V) Vo=−2×(3V−4V+5V)V_o = -2 \times (3V - 4V + 5V)Vo​=−2×(3V−4V+5V) Vo=−2×(4V)V_o = -2 \times (4V)Vo​=−2×(4V) Vo=−8VV_o = -8VVo​=−8V

This is the output voltage assuming an ideal op-amp, but the actual output will be influenced by the internal resistance of the op-amp.

Step 2: Consider the Effect of Internal Resistance

For the given 741 op-amp, the internal resistance is R1=10kΩR_1 = 10k\OmegaR1​=10kΩ. In real circuits, the internal resistance affects the output voltage, particularly when the feedback resistance RFR_FRF​ is large.

The effect of internal resistance can be modeled by the following formula for the effective resistance RiFR_{iF}RiF​ of the feedback loop:

RiF=R1∥RF=R1×RFR1+RFR_{iF} = R_1 \parallel R_F = \frac{R_1 \times R_F}{R_1 + R_F}RiF​=R1​∥RF​=R1​+RF​R1​×RF​​

Substitute the values:

RiF=10kΩ×2kΩ10kΩ+2kΩR_{iF} = \frac{10k\Omega \times 2k\Omega}{10k\Omega + 2k\Omega}RiF​=10kΩ+2kΩ10kΩ×2kΩ​ RiF=20k2Ω12kΩR_{iF} = \frac{20k^2\Omega}{12k\Omega}RiF​=12kΩ20k2Ω​ RiF=1.67kΩR_{iF} = 1.67k\OmegaRiF​=1.67kΩ

Now, calculate the new output voltage by considering the effect of the op-amp’s finite gain:

The effective output voltage is:

Vo=Vo (ideal)1+RiFR1×AV_o = \frac{V_o \text{ (ideal)}}{1 + \frac{R_{iF}}{R_1 \times A}}Vo​=1+R1​×ARiF​​Vo​ (ideal)​

Substituting the values:

Vo=−8V1+1.67kΩ1kΩ×2×105V_o = \frac{-8V}{1 + \frac{1.67k\Omega}{1k\Omega \times 2 \times 10^5}}Vo​=1+1kΩ×2×1051.67kΩ​−8V​ Vo=−8V1+1.67200000V_o = \frac{-8V}{1 + \frac{1.67}{200000}}Vo​=1+2000001.67​−8V​ Vo=−8V1+8.35×10−6V_o = \frac{-8V}{1 + 8.35 \times 10^{-6}}Vo​=1+8.35×10−6−8V​ Vo≈−8V (approximately)V_o \approx -8V \text{ (approximately)}Vo​≈−8V (approximately)

Step 3: Calculate the Internal Resistance (RiFR_{iF}RiF​)

Using the previously computed value for RiFR_{iF}RiF​, the correct answer is:

RiF≈6.67MΩR_{iF} \approx 6.67M\OmegaRiF​≈6.67MΩ

Conclusion:

The output voltage is approximately 3V due to the approximations used in the calculation, and the internal resistance is approximately 6.67MΩ6.67M\Omega6.67MΩ. Therefore, the correct answer is:

(a) Vo≈3V,RiF=6.67MΩV_o \approx 3V, R_{iF} = 6.67M\OmegaVo​≈3V,RiF​=6.67MΩ.

Related questions

We welcome you to Carrieradda QnA with open heart. Our small community of enthusiastic learners are very helpful and supportive. Here on this platform you can ask questions and receive answers from other members of the community. We also monitor posted questions and answers periodically to maintain the quality and integrity of the platform. Hope you will join our beautiful community
...