+2 votes
in Finite Element Method by (110k points)
For a plane strain problem, the relation between stress and strain components for an orthotropic material is σ=Cε. Which option is the correct structure of the matrix C?

(a) \(\begin{pmatrix}\bar{c}_{11} & \bar{c}_{12} & 0 \\\bar{c}_{12} & \bar{c}_{22} & 0 \\0 & 0 & \bar{c}_{66} \end{pmatrix}\)

(b) \(\begin{pmatrix}\bar{c}_{11} & 0 & \bar{c}_{13} \\\bar{c}_{12} & \bar{c}_{22} & 0 \\0 & 0 & \bar{c}_{66} \end{pmatrix}\)

(c) \(\begin{pmatrix}\bar{c}_{11} & \bar{c}_{12} & 0 \\-\bar{c}_{12} & \bar{c}_{22} & 0 \\0 & 0 & \bar{c}_{66} \end{pmatrix}\)

(d) \(\begin{pmatrix}\bar{c}_{11} & -\bar{c}_{12} & 0 \\\bar{c}_{12} & \bar{c}_{22} & 0 \\0 & 0 & \bar{c}_{66} \end{pmatrix}\)

I have been asked this question by my college professor while I was bunking the class.

I need to ask this question from Plane Elasticity topic in portion Plane Elasticity of Finite Element Method

1 Answer

+2 votes
by (185k points)
selected by
 
Best answer
Right answer is (a) \(\begin{pmatrix}\bar{c}_{11} & \bar{c}_{12} & 0 \\\bar{c}_{12} & \bar{c}_{22} & 0 \\0 & 0 & \bar{c}_{66} \end{pmatrix}\)

The explanation: For an orthotropic material under plane strain, with principal material axes (x1, x2, x3) coinciding with the (x, y, z) coordinates, the relation between stress and strain components is \(\begin{pmatrix}\sigma_{xx} \\ \sigma_{yy} \\ \sigma_{xy}\end{pmatrix} = \begin{pmatrix}\bar{c}_{11} & \bar{c}_{12} & 0 \\\bar{c}_{12} & \bar{c}_{22} & 0 \\0 & 0 & \bar{c}_{66} \end{pmatrix} = \begin{pmatrix}\varepsilon_{xx} \\ \varepsilon_{yy} \\ 2 \varepsilon_{xy}\end{pmatrix}\) where C is the elastic stiffness matrix. The state of stress is  σxz=σyz=0 and  \(\sigma_{zz}=E_3(\frac{v_{13}}{E_1}\sigma_{xx}+\frac{v_{23}}{E_2}\sigma_{yy})\).

Related questions

We welcome you to Carrieradda QnA with open heart. Our small community of enthusiastic learners are very helpful and supportive. Here on this platform you can ask questions and receive answers from other members of the community. We also monitor posted questions and answers periodically to maintain the quality and integrity of the platform. Hope you will join our beautiful community
...