Correct answer is (d) \(σ_1=2c \,tan(45°+\frac{φ}{2})+σ_3 tan^2 (45°+\frac{φ}{2})\)
The explanation: The stress condition during plastic equilibrium can be represented by the equation of Mohr-Coulomb,
\(\frac{σ_1-σ_3}{2}-\frac{σ_1+σ_3}{2} sinφ=c cosφ,\)
since tanφ=sinφ/cosφ
∴ \(σ_1=2c \,tan(45°+\frac{φ}{2})+σ_3 tan^2 (45°+\frac{φ}{2}).\)