Correct option is (a) \(\sqrt{((\frac{σ_z-σ_x}{2})^2+τ_{xz}^2))} -\frac{σ_z+σ_x}{2} sinφ=c cosφ\)
To explain I would say: The Mohr Coulomb equation is given by,
\(\frac{σ_1-σ_3}{2}-\frac{σ_1+σ_3}{2} sinφ=c cosφ,\)
Where, σ_1=major principal stress and σ3=minor principal stress.
∴ in terms of stress components in x-z plane it is,
\(\sqrt{((\frac{σ_z-σ_x}{2})^2+τ_{xz}^2))} -\frac{σ_z+σ_x}{2} sinφ=c cosφ,\)
where, σz=stress in z-direction
σx= stress in x-direction.