Right answer is (b) Pa=\(\frac{1}{2}\)Ka γH^2 cot^2 α-2c cotα+\(\frac{2c^2}{γ}\)
The best I can explain: When the negative tensile portion is neglected, the total lateral thrust is given by,
\(P_a=\int_{z_0}^H p_a.dz = \int_{z_0}^H(γzcot^2 α-2c cotα).dz\)
substituting for \(z_0=\frac{2c tanα}{γ},\)
∴ Pa=\(\frac{1}{2}\)Ka γH^2 cot^2 α-2c cotα+\(\frac{2c^2}{γ}.\)