The correct answer is (d) \((\frac{∂^2}{∂x^2} +\frac{∂^2}{∂z^2})(σ_x+σ_z )=0\)
Explanation: For two dimensional case, the six compatibility equations are evidently reduced to one single equation;
\(\frac{∂^2 ε_x}{∂z^2} +\frac{∂^2 ε_z}{∂x^2} = \frac{∂^2 Γ_{xz}}{∂x∂z} ———————(1)\)
From the Hooke’s law equation,
\(ε_x=\frac{1}{E} (σ_x-μσ_z ),\)
\(ε_z=\frac{1}{E} (σ_z-μσ_x ) \) and
\(Γ_{xz}=\frac{2(1+μ)}{E} τ_{zx}\)
Substituting these values in (1) and simplifying further we get,
\((\frac{∂^2}{∂x^2} + \frac{∂^2}{∂z^2})(σ_x+σ_z)=0.\)