Correct answer is (a) \(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0\)
Explanation: The sum of forces acting on the element in the x-direction is given by,
\(\{(σ_x+\frac{∂σ_x}{∂x} \frac{dx}{2})dy.dz-(σ_x-\frac{∂σ_x}{∂x}\frac{dx}{2})dy.dz\} +
\{(τ_{yx}+\frac{∂τ_{yx}}{∂y} \frac{dy}{2})dx.dz-(τ_{yx}-\frac{∂τ_{yx}}{∂y}\frac{dy}{2})dx.dz\} + \)
\(\{(τ_{zx}+\frac{∂τ_{zx}}{∂z}\frac{dz}{2})dx.dy-(τ_{zx}-\frac{∂τ_{zx}}{∂z}\frac{dz}{2})dx.dy\} + Xdx.dy.dz = 0\)
Now dividing all the terms by dx.dy.dz we get,
\(\frac{∂σ_x}{∂x} + \frac{∂τ_{yx}}{∂y} + \frac{∂τ_{zx}}{∂z} +X=0.\)