Correct answer is (b) 35
To explain: let the vertical stress be σz.
The Boussinesq’s vertical pressure σz under a uniformly loaded circular area is given by,
\(σ_z=q\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
If the area is divided into 35 area units, then the stress in each unit is given by,
\(\frac{σ_z}{35}=\frac{q}{35}\left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right] \)
Therefore for \(i_f=\frac{1}{35} \left[1-\left[\frac{1}{1+(\frac{a}{z})^2}\right]^\frac{3}{2}\right], \)
The circular area is divided into 35 sectors.