Correct option is (c) \(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
The best I can explain: The vertical stress under the corner of a uniformly loaded rectangular area of size a, b at depth z and m=a/z, n=b/z is given by,
\(σ_z=\frac{q}{4π} \left[\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1}* \frac{m^2+n^2+2}{m^2+n^2+1}+tan^{-1}\frac{2mn\sqrt{(m^2+n^2+1)}}{m^2+n^2+m^2 n^2+1} \right] \)
m and n are interchangeable terms. The above form of solution is after Newmark(1935).