Right option is (c) \(σ_z=\frac{3Q}{2πz^2}\left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\)
To elaborate: Boussinesq showed that the polar radial stress is given by,
\(σ_R=\frac{3Q}{2π} \frac{cosβ}{R^2} \)
Boussinesq’s vertical stress σz is given by,
σz=σRcos^2 β
∴ \(σ_z=\frac{3Q}{2πz^2}\left[\frac{1}{1+(\frac{r}{z})^2} \right]^{\frac{5}{2}}\) where, σz is the vertical stress
Q is the point load acting at the ground surface
r is the radial horizontal distance
z is the vertical distance.