Right answer is (c) The minimum continuity requirement for interpolation is that they are constant
The best I can explain: In the weak form of the continuity equation, the boundary integral involving weight function is present by the use of integration by parts. It implies that vx and vy are primary variables; this, in turn, requires that vx and vy to be continuous across inter-element boundaries. The minimum continuity requirement for interpolation of vx and vy is that they are linear in x and y.